Symbolic Equation Module

Last Modified on 06/05/2018 11:50 am EDT

Symbolic Equation Module

The Symbolic Equation Module (SEM) allows students to enter answers in a variety of formats, ranging from simple numbers or letters to complex mathematical equations. The screenshot below shows an example of an SEM question. The SEM toolbar is highlighted by the red oval.

Digital Resources for CP: x Smartwork5 x ← C © https://digital.www.notion.com/33673?tstudent_set=59973/d9957/d99542611040356	∞ – □ × Q ☆ ☆ ₩ ♥ 6
✓ How to use SW5 - Symbolic E	helpnotestudent@gmail.com 🔅
1 This is a Symbolic Equation question / It is worth 1 point / You have unlimited attempts / T	here is no attempt penalty
01 Question (1 point)	See page 300
✓ 1st attempt	*
	Le See Periodic Table
In a mixture of three gases (A, B, and C), the number of moles of each gas is known (n_A , n_B , and n_C).	
How would the mole fraction of gas A (χ_A) be calculated using the values n_A , n_B , and n_C ?	
$\mathbf{x}' \mid \mathbf{x}_{\cdot} \mid = \cdot \mid + \cdot \mid \log_{\cdot} \mid \cos_{\cdot} \mid \mathbf{\delta}$. $\mathbf{X}_{\Delta} =$	
0 OF 15 QUESTIONS COMPLETED \$ 01/15 \$	A SUBMIT ANSWER

An enlarged version of the SEM Toolbar (the highlighted area above) is shown below.

The table below provides a summary of each of the tools and their functions:

X	Superscript	The <i>superscript</i> tool is generally used when adding exponents to a variable or expression. This tool can also be accessed via the hotkey SHIFT+^
X	Subscript	The <i>subscript</i> tool is used to add numbers to a chemical formula or labels to variables. This tool can also be accessed via the hotkey SHIFT+_
	Parentheses	The <i>Parentheses</i> menu is used to add a fraction bar, a set of parentheses, or brackets to an expression or equation. The tool contains a dropdown menu, which provides four options.
	Parentheses dropdown menu	In the Parentheses dropdown menu, the four options from left to right are: fraction bar, parenthesis, brackets, and absolute value.
	Simple math	The <i>Simple math</i> menu is used to insert a variety of basic math functions and symbols. The tool contains a dropdown menu, which provides 21 options.

+.	Simple math dropdown menu + $- \times \div = >$ < $\ge \le \pm \neq \approx$ $\sim \alpha \cdot \pi \% \times 10^{\circ}$ $\infty \circ \circ$	The Simple math dropdown menu contains a variety of basic math functions and notations, including operations, equality/inequality symbols, exponential notation, and other useful mathematics symbols.
	Advanced math	The <i>Advanced math</i> menu is used to insert more complicated math functions and symbols. The tool contains a dropdown menu, which provides nine options.
log,	Advanced math dropdown menu log In exp $\sqrt[2]{1}$ $\sqrt[3]{1}$ $\sqrt[3]{2}$ \overline{X} \hat{X} \hat{X}	The Advanced math dropdown menu includes log, natural log, and exponential functions. It also contains root functions and other mathematical variable labels.
	Trigonometry function	The <i>Trigonometry function</i> menu is used to insert trigonometry functions. The tool contains a dropdown menu, which provides six options.
COS	Trigonometry function dropdown menu	The trigonometry functions contained within the dropdown

	sin cos tan cot sec csc	nenu are: sine, cosine, tangent, cotangent, secant, and cosecant.
	stud appropr Greek letters case Gr answer bl open	The <i>Greek letters</i> menu allows students to enter the appropriate upper- or lower- case Greek letter(s) into the answer blank. Clicking the icon opens the Greek letter dropdown menu.
δ.		The Greek letter dropdown menu gives access to both lower-case (top) and upper-
	A B Γ Δ E Z H Θ I K Λ M N Ξ Ο Π P Σ T Y Φ X Ψ Ω	case (bottom) Greek letters.

Here is a video introduction of the Symbolic Equation Module:

Your browser does not support HTML5 video.

Using the Symbolic Equation Module (SEM)

How to use the superscript tool

The superscript tool within the SEM functions identically to the superscript tool in the Chemical Equation Module. An example problem that requires the use of the superscript tool is shown below.

Digital Resources for Chi: x Smartwork5 x ← > C O https://digital.www.orton.com/33673?student_set=59973fd9557d9554261040356				ଅଲ – ଅ × ଭ୍☆ ≱ ₩ ♥ 6 :
✓ How to use SW5 - S	iiii 12/31/17		helpnot	estudent@gmail.com 🌞
✓ 1st attempt				*
Part 1 (1 point)			📠 See Periodic Table	See Hint
$\mathbf{x} \mathbf{x} = . + \log \cos \delta.$ $\frac{3.000 \text{ x } 10^2 \frac{\text{m}}{\text{s}}}{227.7 \text{ m}} = 1.32$				
Part 2 (1 point)				See Hint
$ \mathbf{x}^{\circ} $ $ \mathbf{x}_{\circ} $ $\stackrel{=}{=}$ $ +, $ log, $ $ cos. $ $ $\mathbf{\delta}$.				
< 05/15 >			~	SUBMIT ANSWER

To enter the answer (s^{-1}) , click in the light-gray answer blank to activate the cursor.

Digital Resources for Chi: x Smartwork5 x ← ⇒ C O https://digital.www.norton.com//36/737studentj.set=59973/d95740957409574261040356				Ran – O × Q.☆ ☆ ₩. ♥ € :
✔ How to use SW5 - S	i 12/31/17	score %	helpnot	estudent@gmail.com 🌞
✓ 1st attempt				*
Part 1 (1 point)			.iiii See Periodic Table	See Hint
$\frac{\mathbf{x} \ \mathbf{x} \ }{\frac{m}{s}} + \frac{1}{s} \ \mathbf{tog}, \ \mathbf{cos.} \ \mathbf{\delta}.$ $\frac{3.000 \ \mathbf{x} \ 10^2 \ \frac{m}{s}}{227.7 \ \mathrm{m}} = 1.32$				
Part 2 (1 point)				See Hint
$ \mathbf{X} \mathbf{X}_{i} \stackrel{\scriptscriptstyle{\leftarrow}}{=} \cdot \mathbf{+}_{i} \log_{i} \cos_{i} \mathbf{\delta}_{i}$				
< 05/15 >			~	SUBMIT ANSWER

In the answer blank, type "s" and then click on the superscript icon, X^{*} . This opens the superscript window within the answer blank.

Digital Resources for Chi x Smartwork5 x ← O O https://digital.wwnotion.com/33673?student_set=59973/d9554261040356		®an – of × Q.☆.≱.₩.♥ 8		
✓ How to use SW5 - S	iii 12/31/17	score %	helpnot	estudent@gmail.com 🌞
✓ 1st attempt				*
Part 1 (1 point)			See Periodic Table	See Hint
x x = . + , log, cos. δ . $\frac{3.000 \text{ x} 10^2 \frac{\text{m}}{\text{s}}}{227.7 \text{ m}} = 1.32$				
Part 2 (1 point) x' x =. +. log. cos. δ.				See Hint
< 05/15 >			۰	SUBMIT ANSWER

In the superscript window, enter the exponent for the answer (-1) and click outside the answer blank. You are now ready to submit your answer.

Digital Resources for Cir. x / Smartwork5 x Bail € → Of © https://digital.www.orton.com/336737.studient_set=59973fd957.d955426.1040356 Q: x / a: x x				
✔ How to use SW5 - S	₩ 12/31/17 score %	helpnot	estudent@gmail.com 🌞	
✓ 1st attempt			*	
Part 1 (1 point) x' x. =. +. log. cos. δ.		ilii See Periodic Table	See Hint	
$\frac{3.000 \text{ x } 10^2 \frac{\text{m}}{\text{s}}}{227.7 \text{ m}} = 1.32 \text{ s}^{-1}$				
Part 2 (1 point)			See Hint	
$ \mathbf{X}^{\circ} $ $ \mathbf{X}_{\circ} $ $=$ $+$ $ $ log, $ $ cos. $ $ $\boldsymbol{\delta}$.				
< 05/15 >		~	SUBMIT ANSWER	

Here is a video demonstration of the superscript tool:

How to use the subscript and parentheses tools

To answer the question below, we will need to make use of the subscript () and

parentheses () tools. While the *subscript* tool can be used in a very similar manner to the *superscript* tool (described above), there is also an alternate method to using these tools which can be helpful in some instances. The problem below asks us to express the mole fraction of gas A (X_A) in terms of the moles of gases A, B, and C, n_A, n_B, and n_C, respectively.

 $\frac{n_A}{n_A + n_B + n_C}$

Digital Resources for C x G O https://digitaluwenorton.com/33673?tudent_set=59973/d957d9554261040356			ଲେ – ପ > ର 🕁 🌧 🕊 🦁 ϐ
✓ How to use SW5 - S	score %	helpnot	estudent@gmail.com 🔅
✓ 1st attempt			
		illi See Periodic Table	See Hint
In a mixture of three gases (A, B, and C), the number of	moles of each	gas is known (n_A , n_B , and n_C).	
How would the mole fraction of gas A ($\chi_{\mathcal{A}}$) be calculated	dusing the valu	les n_A , n_B , and n_C ?	
$X^\circ \mid X_\circ \mid =$, $\mid +_\circ \mid \log_\circ \mid \cos_\circ \mid \delta_\circ$			
$\mathbf{X}_{\mathbf{A}} =$			
< 01/15 >		•	SUBMIT ANSWER

To enter the answer, click in the answer blank (light-gray) to activate the cursor.

Digital Resources for Ch: × ← → C ① https://digit	Smartwork5 x				ଅଲେ – ଅ × ର.☆
< How to ι	ise SW5 - S	i 12/31/17	score %	helpnot	testudent@gmail.com 🌞
~	1st attempt				*
	In a mixture of three gases (A, B, ar How would the mole fraction of ga $\mathbf{x} \mid \mathbf{x}, \mid = . \mid +, \mid \log, \mid \cos .$ $X_A = \mid$	s A (χ_A) be calculated			See Hint
< 01 /1	5 >			•	SUBMIT ANSWER

To format our answer correctly, we must add a fraction bar. To do this, click on the

parentheses tool, _____. This will display the dropdown menu.

Dgital Resources for CP:: X Smartnork5 X C O: https://digital.www.norton.com/386737student_set=59973fd9557d9554261040356		ଅଲ – ଫ × ୟ ଛ <mark>, କ ଭ ♥</mark> 6
✔ How to use SW5 - S	≣ 12/31/17 scole %	helpnotestudent@gmail.com 🔅
✓ 1st attempt		
		See Periodic Table Q See Hint
In a mixture of three gases (A, B	B, and C), the number of moles of each gas is	known (n_A , n_B , and n_C).
How would the mole fraction of	f gas A (χ_A) be calculated using the values n_A	$_{\rm k}, n_B$, and n_C ?
$ \begin{array}{c c} \mathbf{x} & \mathbf{x} & = \\ \mathbf{x} & = \\ \end{array} $	cos. δ.	
< 01 _{/15} >		submit answer

From the dropdown menu, select the Fraction option (circled in red above) to add the Fraction bar to the answer blank.

Digital Resources for Chi: X Smartwork5 X ← ⑦ ① https://digital.wwwnorton.com/33673?student_set=59973fd957d9554261040356				Ran − ♂ × 0,☆ ☆ ₩. ♥ 6
	iii 12/31/17	u %	helpnote	estudent@gmail.com 🌞
✓ 1st attempt				^
			iii See Periodic Table	See Hint
In a mixture of three gases (A,	B, and C), the number of mole	es of each gas is	s known (n_A , n_B , and n_C).	
How would the mole fraction of	of gas A (χ_A) be calculated usir	ng the values <i>n,</i>	$_{A}$, n_{B} , and n_{C} ?	
$\mathbf{X}^{\circ} \mid \mathbf{X}_{\circ} \mid = . \mid \mathbf{+}_{\circ} \mid \log_{\circ} \mid$	cos. δ .			
X _A =				
< 01 _{/15} >			• 5	SUBMIT ANSWER

Click in the top entry blank within the fraction bar window. Using your keyboard, type "nA" (without the quotes) into the blank.

To format the A into subscript notation, highlight the A by clicking and dragging the cursor. When you release the mouse button, the A will be highlighted.

Digital Resources for Ch: X ← C ① https://digital.www.orton.com/33673?student_set=59973fd957d95	54261040356			ାଲେ – ମ × ବ୍ଳ ଛ ଝ ♥ € :
	iii 12/31/17	score %	helpnot	estudent@gmail.com 🌞
 1st attempt 				*
In a mixture of three ga	$\cos(A = and C)$ the number of m	poles of each	See Periodic Table	See Hint
	ses (A, B, and C), the number of m			
How would the mole fraction $\mathbf{x}^* = \mathbf{x}^* = \mathbf{x}^* = \mathbf{x}^*$ $\mathbf{x}_A = \boxed{\mathbf{n}_A}$	action of gas A (χ_A) be calculated uton of gas A (χ_A) be calculated uton of gas. δ .	using the valu	ies n _A , n _B , and n _C ?	
< 01/15 >			•	SUBMIT ANSWER

With the A highlighted, click on the subscript icon, X, in the toolbar. The A should now be properly formatted. Note: this alternate method can be similarly used for the superscript tool as well.

Digital Resources for Ch: ← → C ① https://dig	Smartwork5 x				©n – 0 0,☆,*, ♥
< How to	use SW5 - S	i 12/31/17	score %	helpnot	estudent@gmail.com
~	1st attempt				*
				Le Periodic Table	See Hint
	In a mixture of three gases (A, B, and C	C), the number of m	noles of each ga	as is known (n_A , n_B , and n_C).	
	How would the mole fraction of gas A $\mathbf{x}^* + \mathbf{x}_* = \mathbf{x}_* + \mathbf{x}_* + \mathbf{x}_*$	(χ_A) be calculated δ .	using the value	is n_A , n_B , and n_C ?	
	$X_A = $				
< 01 /1	5 >			•	SUBMIT ANSWER

To complete the answer, click on the bottom entry blank within the fraction bar window,

and type in "nA+nB+nC" (without the quotes).

Note: the answer blank will automatically format the spacing between the addition symbol and the variables. There is no need to manually put spaces between them.

Digital Resources for Circ X Smartwork5 X € > Circ 0 https://digital.www.ort.on.com/336731ttudent_set=59973fd957d9554251040356			ାଲେ – ୦ × ବ୍କୁ ≱ ₩. ♥ 6
✓ How to use SW5 - S	score %	helpnote	student@gmail.com 🌞
✓ 1st attempt			^
		iii See Periodic Table	See Hint
In a mixture of three gases (A, B, and C), the number of	moles of each	gas is known (n_A , n_B , and n_C).	
How would the mole fraction of gas A ($_{\chi {\cal A}}$) be calculated	d using the valu	les n_A , n_B , and n_C ?	
$\mathbf{X}^{*} \mid \mathbf{X}_{*} \mid = \mathbf{H}_{*} \mid \mathbf{log}_{*} \mid \mathbf{cos.} \mid \mathbf{\delta}.$ $\mathbf{X}_{A} = \boxed{\frac{\mathbf{n}_{A}}{\mathbf{nA} + \mathbf{nB} + \mathbf{nC}}}$			
< 01 /15 >		🗢 s	UBMIT ANSWER

Using the method described above, highlight the A followed by clicking the subscript icon to properly format it. You can follow this same procedure to format the B and C in subscript notation. Note: using this method, you can only highlight/format one letter at a time.

Digital Resources for Chr. x Smartw ← ♥ ♥ ↓ ttps://digital.wwwnorton.	ork5 x				ଅଲ – ଅ × ବ୍ଳ ≱ ₩ ♥ 6 :
 How to use SW 	/5 - S		%	helpnot	estudent@gmail.com 🌸
👻 1st a	ttempt				*
			12	ini See Periodic Table	See Hint
In a m	ixture of three gases (A, B, and C), t	the number of moles o	f each gas is kno	wn (n_A , n_B , and n_C).	
	would the mole fraction of gas A ($_{\chi \not A}$	a) be calculated using t	he values <i>n_A, n_B,</i>	and n_C ?	
	$\mathbf{x}^{L} \mid \mathbf{x}_{L} \mid \frac{-}{-}, \mathbf{+}_{L} \mid \log_{L} \mid \cos_{L} \mid \mathbf{\delta}.$ $\mathbf{A} = \frac{\mathbf{n}_{A}}{\mathbf{n}_{A} + \mathbf{n}_{B} + \mathbf{n}_{C}}$				
< 01/15 >				~	SUBMIT ANSWER

Here is a video demonstration of the subscript and parentheses tools:

Your browser does not support HTML5 video.

How to use the simple math and advanced math tools

The simple and advanced math tools contain a variety of mathematical functions, which can be used to write math equations or expressions in the answer blanks. Both tools, as evidenced by the small triangle on the lower-right side of their icons, contain dropdown menus which are displayed upon clicking on the icons.

The simple math dropdown contains basic math operations (addition, multiplication, percent, etc.) and other standard symbols (degree, pi, infinity, etc.). While available via the dropdown menu, many of these can also be typed into the answer blanks. The advanced math tool contains more complex operations such as logs, natural logs, and various roots.

In Part 2 of the problem below, we are asked to solve for x. To input our answer properly, we will use both the simple and advanced math tools. Additionally, we will need to use

the parentheses tool,

 $\log\left(\frac{a}{b}\right) - 5$

The correct answer for the problem is:

Digital Resources for Che ← → C ③ https://digital.		twork5 x			- ₫ X @ ✿ ₹ ₹
How to use SW!	5 - Symbo	olic Editor	iii 12/31/17	helpnotestu	dent@gmail.com 🌸
	So	Question (4 points) live each of these equations for x in the provid lculations, i.e. keep the logarithmic functions i	led equation editor modules. Do not substitute the numeric in your answer where applicable.	al values of any base 10 logarithms in your	
	~	1st attempt		*	
		Part 1 (1 point)		In See Periodic Table	
		$10^{X} = a$ $x' \mid x, \mid =, \mid +, \mid \log_{2} \mid \cos_{3} \mid \delta,$ $x =$	I		
		Part 2 (1 point)			
		$ \begin{aligned} b \times 10^{\left(X+5\right)} = & \\ x \mid x_{\cdot} \mid \stackrel{\frown}{=} \cdot \cdot + \cdot \mid \log_{\circ} \mid \cos_{\circ} \mid \delta_{\cdot} \end{aligned} $			
	\subset	0 OF 15 QUESTIONS COMPLETED	< 12/15 >	I SUBMIT ANSWER	

Click the light-gray answer blank to activate the cursor.

Digital Becomes for Cho x x ← C O https://digital.www.orton.com/35/73/huddent_set=5997316857.d9554261040356			– ୮ × ର୍ନ 💽 :
K How to use SW5 - S A A = · T. log, cos. 0.	in 12/31/17 €	h	elpnotestudent@gmail.com 🔅
x =			
Part 2 (1 point)			
$b \times 10^{(x+5)} = a$ $x^{*} x_{\cdot} = a$ $+ \cdot \log_{\cdot} \cos_{\cdot} \delta_{\cdot}$			
x =			
Part 3 (1 point)			
< 12/15 >		+ VIEW SOLUTION	A SUBMIT ANSWER

Click the *advanced math* tool icon, **log**, to display its dropdown menu. From the dropdown, click on the log function. The log function should now appear in the answer blank.

Note: If clicking the log function did not make it appear in the answer blank, you may need to again click inside the answer blank to activate it and repeat the steps here to add the log function.

Tot Digital Resources for Ch: × Smartwork5 × Image: Chicago and the state of the s	_			- ठ > ९ ४ 😵
✓ How to use SW5 - S	i 12/31/17	یلا 6%	l	helpnotestudent@gmail.com 🌞
$\mathbf{X} = \begin{bmatrix} \mathbf{X} \\ \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{Y} \\ \mathbf{Y} \end{bmatrix}$				
Part 2 (1 point)				
$b \times 10^{(x+5)} = a$ $x^{+} x_{-} = a$ $b_{-} + b_{-} \log_{-} \cos_{-} \delta_{-}$				
x = log				
Part 3 (1 point)				
< 12/15 >			+ VIEW SOLUTION	A SUBMIT ANSWER

With the cursor active, click on the parenthesis tool, _____, to reveal its dropdown menu. Click on the second option (parentheses; circled in red below).

model Resources for Ch. x x x ← C 0 Interp://digital.www.norton.com/03/673/intudem_uset-59973/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis55/dis56/	iii 12/31/17 and 6%	ຸ່ອ ແ ≵ ♥ helpnotestudent@gmail.com 🔅
x =		
Part 2 (1 point)		
$b \times 10^{(x+5)} = a$ $x \mid x, \mid = . \mid + . \mid \log.$ $x = \log$	cos. δ.	
Part 3 (1 point)		
< 12/15 >		• VIEW SOLUTION

This will add the parentheses to the blank.

Digital Resources for Ci∈ x Smartwork5 x ← C O https://digital.wwnorton.com/33673?trudent_set=55987368957489554261040356			– ଅ × ଭ୍ଛ 💡 :
	12/31/17	h	elpnotestudent@gmail.com 🔅
\mathbf{X} \mathbf{X}_{\perp} \equiv \pm , \log_{\star} \cos_{\star} 0_{\star}			
x =			
Part 2 (1 point)			
$b \times 10^{(x+5)} = a$ $x + x = \frac{1}{2} + \frac{1}{2} \log (x + \delta)$			
$\mathbf{x} = \log(\mathbf{x})$			
Part 3 (1 point)			
< 12/15 >		# VIEW SOLUTION	P SUBMIT ANSWER

Click in the answer blank between the two parentheses to activate it. Click on this tool to

reveal its dropdown menu: Click on the first option (fraction; circled in red below).

Bigital Resources for Co: x ≤ SmartworkS x □ ← → C © 0 https://digital.www.ort.on.com/13/673/husdem/.sets/59973/6955766554261040356			– ७ × ०.२
✓ How to use SW5 - S	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	l. I	nelpnotestudent@gmail.com 🌞
\mathbf{X} \mathbf{X}_i \mathbf{T}_i \mathbf{T}_i \log_i \cos_i 0 .			
x =			
Part 2 (1 point)			
$b \times 10^{(x+5)} = a$ $x x = + \log, \cos \delta.$ $x = \log()$			
Part 3 (1 point)			
< 12/15 >		+ VIEW SOLUTION	SUBMIT ANSWER

This will add the fraction bar within the parentheses.

Digital Resources for Co: X Smartwork3 X Image: Second Secon			- ₫ × Q☆ ¥ :
K How to use SW5 - S A A = + + + iog. cos. 0 +	in 12/31/17 € 5%	he	elpnotestudent@gmail.com 🔅
x =			
Part 2 (1 point)			
$b \times 10^{(x+5)} = a$ $x^* \mid x_* \mid = \cdot \mid + \cdot \mid \log_* \mid \cos_* \mid \delta.$			
$\mathbf{x} = \log\left(-\right)$			
Part 3 (1 point)			
< 12/15 >		+ VIEW SOLUTION	SUBMIT ANSWER

Click in the box in the numerator (top) and type the letter "a." You can now click in the denominator and type the letter "b."

Cojdal Resources for Co: x Smartwork5 x C: -> C: 0: https://digital.www.notion.com//36/73/5ku/dem/_set=59973/ka9557495542661040356			– ତ × ବ ଝ 🔮
✓ How to use SW5 - S	≣ 12/31/17 store 6%		elpnotestudent@gmail.com 🌞
$\mathbf{X} + \mathbf{X}_{i} + \mathbf{\overline{z}}_{i} + \mathbf{\uparrow}_{i} + \log_{i} + \cos_{i} + \mathbf{O}_{i}$			
x =			
Part 2 (1 point)			
$b \times 10^{(x+5)} = a$ $x' \mid x, \mid = . \mid +, \mid \log, \mid \cos, \mid \delta.$			
$\mathbf{x} = \log\left(\frac{\mathbf{a}}{\mathbf{b}}\right)$			
Part 3 (1 point)			
< 12/15 >		+ VIEW SOLUTION	SUBMIT ANSWER

Click in the answer blank to the right of the parentheses. Click on the simple math tool,

+, , to open its dropdown menu. Click on the subtraction symbol, and type the number "5." Your answer is now complete.

tigstal Resources for Co: x Smartwork5 x ← ⇒ C: O: https://digital.www.ort.onc.com/03/673?twd.ent.yeee.599771dtb57.d5554261040356		_		– ଅ × ୧.୫ 😵 :
✔ How to use SW5 - S	i 12/31/17	score 6%		helpnotestudent@gmail.com 🔅
$\mathbf{X} + \mathbf{X}_{i} + \mathbf{T}_{i} + \mathbf{I}_{i} + $				
x =				
Part 2 (1 point)				
$b \times 10^{(x+5)} = a$ $x \mid x \mid = \cdot \mid + \cdot \mid \text{ fog. } \mid \text{ cos. } \mid \delta.$				
$\mathbf{x} = \log\left(\frac{\mathbf{a}}{\mathbf{b}}\right) - 5$				
Part 3 (1 point)				
< 12/15 >			4 VIEW SOLUTION	SUBMIT ANSWER

Here is a video demonstration of the simple math and advanced math tools:

Your browser does not support HTML5 video.

Similar to the *parentheses* and *math* tools described above, the *trigonometry* and *Greek letter* tools also contain dropdown menus. In the case of the trigonometry tool, the dropdown menu provides trigonometric functions, such as sine and cosine. The Greek letter tool dropdown menu contains uppercase and lowercase Greek letters. The use of these tools is identical to the other tools which contain dropdown menus.

Entering roots into the Symbolic Equation Module (SEM)

Several of the options within the *advanced math* tool allow students to enter various roots as a portion of their answers. In addition to the options for square roots and cube

roots, there is also an option to enter roots of other powers as well, the Nth root tool.

In the problem below, Part 2 provides an example of how to input a root function into the answer blank. We will also need to use the parentheses, , tool. The solution will be shown using the "other power" option, even though the cube root option could be used.

The answer to the question is:

New Tab X		ources for Chic X / SmartworkS X		(tea		a x
← → C ① https://digital.ww	vnorton.cor	n/9997copy&student_set=59973fd957d9554261040356&original=5a2059237350a772c363362a	G	2 1 1	w. 🔊	6 :
K How to use SW5	- Symbo	olic Editor - Part 2	bro	wnkj@v	vssu.ed	iu 🏶
		1 This is a Symbolic Equation question / It is worth 3 points / You have unlimited attempts / There is no attempt penalty				
		Question (3 points) Ive each of these equations for x in the provided equation editor modules.				
	>	Solution	+			
	~	1st attempt	*			
		Part 1 (1 point)	int			
		$\frac{1}{x} = a^2$				
		$\mathbf{x}^{\prime} \mid \mathbf{x}_{\cdot} \mid \oplus, \mid \oplus, \mid \mathbf{tog}_{\cdot} \mid \mathbf{cos}_{\cdot} \mid \mathbf{\delta}_{\cdot}$ $\mathbf{x} =$				
		X-				
		< 11/15 >	NSWER			

Click the light-gray answer blank to activate the cursor.

New Tab X Digital Resources for Circ X Smartwork5 X	8an - 0 ×
← → C 🛈 https://digital.wwnorton.com/9997copy&student_set=59973fd957d9554261040356&original=5a2059237350af72c363362a	Q 🖈 🗯 🖤 🖁
K How to use SW5 - S	brownkj@wssu.edu 🔅
x =	
Part 2 (1 point)	
$x^3 + a = c$	
$\mathbf{X}^{\circ} \mid \mathbf{X}_{\circ} \mid = \mathbf{A}^{\circ} \mid \mathbf{A}^{\circ$	
x =	
Part 3 (1 point)	
< 11 /15 >	A SUBMIT ANSWER

Click the *advanced math* tool icon, log, , to display its dropdown menu. From the dropdown, click on the Nth root function (circled in red below).

New Tab X Digital Resources for Chr. X Smathwords X ← → C O https://digital.www.not.on.com/9997.cop/distudent_set=59973655426104035568.org/null=5a20592237350a172c163362a	(Ban) (0、☆ 余	- 0 	
K How to use SW5 - S	brownkj@wssu.e	edu 🔅	
x =			
Part 2 (1 point)			
$x^3 + a = c$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Part 3 (1 point)			
< 11/15 >	🎙 SUBMIT ANSWE	R	

The Nth root function should now appear in the answer blank. **Note**: if clicking the Nth root function did not make it appear in the answer blank, you may need to again click

inside the answer blank to activate it and repeat the steps here to add the function.

New Tab X Digital Resources for Ch: X SmartworkS X	Ban		
← → C (③) https://digital.wwnorton.com/9997copy@student_set=59973td957d9554261040356@corginal=5a2059237350af72c363362a	@☆ å	w. 🔊	6 :
< How to use SW5 - S	brownkj@wssu	.edu	\$ F
x =			
Part 2 (1 point)			
$x^3 + a = c$			
$X \mid X \mid = \cdot \mid + \cdot \mid \log_{1} \mid \cos_{2} \mid \delta_{2}$			
$\mathbf{x} = \sqrt{1}$			
Part 3 (1 point)			
< 11/15 >	SUBMIT ANSW	ER	

Click in the upper dark-gray box, and type the power of the root (3).

New Tab X Digital Resources for Chr. X Smartwork5 X		0an - 0 ×
$\leftarrow \rightarrow \mathbf{C} \ \fbox{0} \ \texttt{https://digital.www.orton.com/999?copy&student_set=59973fd957d9554261040356&original=5a2059237350af7.} \\$	2c363362a	@☆** ♥ € :
≮ How to use SW5 - S	score %	brownkj@wssu.edu 🔅
x =		
Part 2 (1 point)		
$x^3 + a = c$		
$ \mathbf{X}^{*} \mathbf{X}_{*} = 1 \mathbf$		
$\mathbf{x} = \begin{bmatrix} 3 \\ - \end{bmatrix}$		
Part 3 (1 point)		
< 11/15 >		SUBMIT ANSWER

To add "(c - a)" inside the root, click in the dark-gray box under the root symbol. Then

click on the parentheses tool, , to reveal its dropdown menu. Click on the second option (parentheses; red circle in the picture below).

New Tab X Digital Resources for Chi X Smartwork5 X		Baa —	o ×
← → C 🔘 https://digital.wwnorton.com/999?copy&student_set=59973fd957d9554261040356&coriginal=5a2059237350af72c363362	a	Q 🕁 🌧 🗰 1	Ø 6 :
✓ How to use SW5 - S	score %	brownkj@wssu.edu	*
x =			
Part 2 (1 point)			
$x^3 + a = c$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Part 3 (1 point)			
< 11/15 >		P SUBMIT ANSWER	

This will place the parentheses inside the root function.

New Tab x Digital Resources for Circ. x/ Smartunot 5 x € → Ø (0) https://digital.www.orden.com.rg997/copy8.studient_set=5997316/957409554251040356&0.org/nail=5a2059237350a/72c36336	2a	ଅଲ – ୦ × ଭ୍ର ଛ ⇒ ₩ ♥ 6 :
✓ How to use SW5 - S	%	brownkj@wssu.edu 🔅
x =		_
Part 2 (1 point)		
$x^3 + a = c$		
$ \mathbf{X} \mathbf{X} = \mathbf{h} \mathbf$		
$\mathbf{x} = \sqrt[3]{()}$		
Part 3 (1 point)		
< 11/15 >		SUBMIT ANSWER

With the cursor active in the answer blank, enter "c - a" (without the quotes). Note: you could have also used the simple math tool, +, to add the subtraction symbol. The answer is now complete and ready for submission.

New Tab X Digital Resources for Ch− x Smartwork5 x C € → C © () <th>362a</th> <th>® – ा × ९.फ्रे के ₩. ७ 6 :</th>	362a	® – ा × ९.फ्रे के ₩. ७ 6 :
✔ How to use SW5 - S	score %	brownkj@wssu.edu 🔅
x =		
Part 2 (1 point)		
$x^3 + a = c$		
$ \mathbf{X}^{\circ} \mathbf{X}_{\circ} \stackrel{=}{=} \cdot + \cdot \log_{\circ} \cos_{\circ} \mathbf{\delta}_{\circ}$		
$\mathbf{x} = \sqrt[3]{(\mathbf{c}-\mathbf{a})}$		
Part 3 (1 point)		
< 11/15 >		A SUBMIT ANSWER

Here is a video demonstration that covers adding roots:

Your browser does not support HTML5 video.

Tips and Suggestions for using the Symbolic Equation Module (SEM)

1) Before switching tools within the same answer blank, you will need to click in the answer blank (away from your entered answer) to exit the current tool and then click the icon for the next tool you need. If you do not do this, you may encounter some formatting issues that will affect how the system grades your answer.

2) If you are having difficulty with formatting an answer properly, it may be simpler to delete your answer completely and reenter it rather than trying to fix it.